SUMMER REVIEW PACKET

for students entering <u>AP CALCULUS</u>

- **1.** This packet is to be handed in to your Calculus teacher on the first day of the school year.
- 2. All work must be shown in the packet OR on separate paper attached to the packet.
- **3.** Completion of this packet is worth one-half of a major test grade and will be counted in your first marking period grade.

Formula Sheet

Reciprocal Identities:	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{1}{\tan x}$
Quotient Identities:	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$	
Pythagorean Identities:	$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$1 + \cot^2 x = \csc^2 x$
Double Angle Identities:	$\sin 2x = 2\sin x \cos x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	cos 2	$x = \cos^2 x - \sin^2 x$ $= 1 - 2\sin^2 x$ $= 2\cos^2 x - 1$
Logarithms:	$y = \log_a x$ is equiv	ealent to $x = a^y$	
Product property:	$\log_b mn = \log_b m + \log_b$	$\mathbf{g}_b \mathbf{n}$	
Quotient property:	$\log_b \frac{m}{n} = \log_b m - \log_b m$	$g_b n$	
Power property:	$\log_b m^p = p \log_b m$		
Property of equality:	If $\log_b m = \log_b n$, the	en m = n	
Change of base formula:	$\log_a n = \frac{\log_b n}{\log_b a}$		
Derivative of a Function:	Slope of a tangent lin	e to a curve or the de	rivative: $\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$
<u>Slope-intercept form</u> : $y = m$:	x + b		
<u>Point-slope form</u> : $y - y_1 = m$	$(x-x_1)$		
Standard form: $Ax +$	By + C = 0		

Summer Review Packet for Students Entering AP Calculus

Complex Fractions

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Example:

$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} \left(\frac{x+1}{x+1}\right) = \frac{-7x - 7 - 6}{5} = \frac{-7x - 13}{6}$$

$$\frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} \left(\frac{x(x-4)}{x(x-4)}\right) = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^2}{5x^2 - 20x - x} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$$

Simplify each of the following.

1.
$$\frac{\frac{25}{a}-a}{5+a}$$
 2. $\frac{2-\frac{4}{x+2}}{5+\frac{10}{x+2}}$ 3. $\frac{4-\frac{12}{2x-3}}{5+\frac{15}{2x-3}}$

4.
$$\frac{\frac{x}{x+1} - \frac{1}{x}}{\frac{x}{x+1} + \frac{1}{x}}$$
 5. $\frac{1 - \frac{2x}{3x-4}}{x + \frac{32}{3x-4}}$

Functions

9.
$$f[g(-2)] =$$
 10. $g[f(m+2)] =$ **11.** $\frac{f(x+h) - f(x)}{h} =$

Let $f(x) = \sin x$ Find each exactly.

12.
$$f\left(\frac{\pi}{2}\right) =$$
 _____ **13.** $f\left(\frac{2\pi}{3}\right) =$ _____

Let $f(x) = x^2$, g(x) = 2x + 5, and $h(x) = x^2 - 1$. Find each.

14.
$$h[f(-2)] =$$
 _____ **15.** $f[g(x-1)] =$ _____ **16.** $g[h(x^3)] =$ _____

Find
$$\frac{f(x+h) - f(x)}{h}$$
 for the given function *f*.
17. $f(x) = 9x + 3$
18. $f(x) = 5 - 2x$

Intercepts and Points of Intersection

To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve. **Example:** $y = x^2 - 2x - 3$ $\frac{x - \text{int. (Let } y = 0)}{0 = x^2 - 2x - 3}$ 0 = (x - 3)(x + 1) x = -1 or x = 3 x - intercepts (-1, 0) and (3, 0) $\frac{y - \text{int. (Let } x = 0)}{y = 0^2 - 2(0) - 3}$ y = -3 y - intercept (0, -3)

Find the x- and y-intercepts for each.

19.
$$y = 2x - 5$$
 20. $y = x^2 + x - 2$

21.
$$y = x\sqrt{16 - x^2}$$
 22. $y^2 = x^3 - 4x$

Use substitution or elimination method to solve to Example: $x^{2} + y - 16x + 39 = 0$ $x^{2} - y^{2} - 9 = 0$	the system of equations.
Elimination Method $2x^2 - 16x + 30 = 0$ $x^2 - 8x + 15 = 0$ (x - 3)(x - 5) = 0 x = 3 and x = 5 Plug $x = 3 \text{ and } x = 5$ into one original $3^2 - y^2 - 9 = 0$ $5^2 - y^2 - 9 = 0$ $-y^2 = 0$ $16 = y^2$ $y = 0$ $y = \pm 4$ Points of Intersection (5,4), (5,-4) and (3,0)	Substitution MethodSolve one equation for one variable. $y^2 = -x^2 + 16x - 39$ (1st equation solved for y) $x^2 - (-x^2 + 16x - 39) - 9 = 0$ Plug what y^2 is equal to into second equation. $2x^2 - 16x + 30 = 0$ (The rest is the same as $x^2 - 8x + 15 = 0$ $x^2 - 8x + 15 = 0$ previous example) $(x - 3)(x - 5) = 0$ $x = 3 \text{ or } x - 5$

Find the point(s) of intersection of the graphs for the given equations.

23.
$$\begin{aligned} x + y &= 8\\ 4x - y &= 7 \end{aligned}$$
 24.
$$\begin{aligned} x^2 + y &= 6\\ x + y &= 4 \end{aligned}$$
 25.
$$\begin{aligned} x^2 - 4y^2 - 20x - 64y - 172 &= 0\\ 16x^2 + 4y^2 - 320x + 64y + 1600 &= 0 \end{aligned}$$

Interval Notation

26. Complete the table with the appropriate notation or graph.

Solution	Interval Notation	Graph
$-2 < x \le 4$		
	[-1,7)	
		∢ →→→ 8

Solve each equation. State your answer in BOTH interval notation and graphically.

27.
$$2x-1 \ge 0$$
 28. $-4 \le 2x-3 < 4$ **29.** $\frac{x}{2} - \frac{x}{3} > 5$

Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.

30.
$$f(x) = x^2 - 5$$
 31. $f(x) = -\sqrt{x+3}$ **32.** $f(x) = 3\sin x$ **33.** $f(x) = \frac{2}{x-1}$

Inverses

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value. **Example:** $f(x) = \sqrt[3]{x+1}$ Rewrite f(x) as y $y = \sqrt[3]{x+1}$ Switch x and y $x = \sqrt[3]{y+1}$ Solve for your new y $(x)^3 = (\sqrt[3]{y+1})^3$ Cube both sides $x^3 = y+1$ Simplify $y = x^3 - 1$ Solve for y $f^{-1}(x) = x^3 - 1$ Rewrite in inverse notation

Find the inverse for each function.

34.
$$f(x) = 2x + 1$$
 35. $f(x) = \frac{x^2}{3}$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: f(g(x)) = g(f(x)) = x

Example:

If:
$$f(x) = \frac{x-9}{4}$$
 and $g(x) = 4x+9$ show $f(x)$ and $g(x)$ are inverses of each other.

$$f(g(x)) = 4\left(\frac{x-9}{4}\right) + 9 \qquad g(f(x)) = \frac{(4x+9)-9}{4}$$

$$= x-9+9 \qquad \qquad = \frac{4x+9-9}{4}$$

$$= x \qquad \qquad = \frac{4x}{4}$$

$$= x$$

$$f(g(x)) = g(f(x)) = x$$
 therefore they are inverses of each other.

Prove f and g are inverses of each other.

36.
$$f(x) = \frac{x^3}{2}$$
 $g(x) = \sqrt[3]{2x}$ **37.** $f(x) = 9 - x^2, x \ge 0$ $g(x) = \sqrt{9 - x}$

Equation of a Line

Slope intercept form: y = mx + bVertical line: x = c (slope is undefined)Point-slope form: $y - y_1 = m(x - x_1)$ Horizontal line: y = c (slope is 0)

38. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.

39. Determine the equation of a line passing through the point (5, -3) with an undefined slope.

40. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

41. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.

42. Find the equation of a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x - 1$.

43. Find the equation of a line perpendicular to the *y*-axis passing through the point (4, 7).

44. Find the equation of a line passing through the points (-3, 6) and (1, 2).

45. Find the equation of a line with an x-intercept (2,0) and a y-intercept (0,3).

Radian and Degree Measure

Use $\frac{180^{\circ}}{\pi radians}$ to get rid convert to degrees.	of radians and	Use $\frac{\pi radians}{180^{\circ}}$ to get rid of degrees and convert to radians.					
46. Convert to degrees:	a. $\frac{5\pi}{6}$	b. $\frac{4\pi}{5}$	c. 2.63 radians				
47. Convert to radians:	a. 45°	b. −17°	c. 237°				

Angles in Standard Position

48. Sketch the angle in standard position.

a. $\frac{11\pi}{\epsilon}$	b. 230°	c. $-\frac{5\pi}{2}$	d. 1.8 radians
6			

Reference Triangles

49. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.

a.
$$\frac{2}{3}\pi$$
 b. 225°

Unit Circle

c. $-\frac{\pi}{4}$

You can determine the sine or cosine of a quadrantal angle by using the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle. Example: $\sin 90^\circ = 1$ $\cos \frac{\pi}{2} = 0$

d. 30°

Graphing Trig Functions

Graph two complete periods of the function.

51. $f(x) = 3 \sin(x)$

52. $f(x) = \sin(2x)$

54. $f(x) = \cos(x) - 1$

Trigonometric Equations:

Solve each of the equations for $0 \le x < 2\pi$. Isolate the variable, sketch a reference triangle, find all the solutions within the given domain, $0 \le x < 2\pi$. Remember to double the domain when solving for a double angle. Use trig identities, if needed, to rewrite the trig functions. (See formula sheet at the end of the packet.)

55.
$$\sin x = -\frac{1}{2}$$
 56. $2\cos x = \sqrt{3}$

57.
$$\cos 2x = \frac{1}{\sqrt{2}}$$
 58. $\sin^2 x = \frac{1}{2}$

59.
$$\sin 2x = -\frac{\sqrt{3}}{2}$$
 60. $2\cos^2 x - 1 - \cos x = 0$

61. $4\cos^2 x - 3 = 0$ **62.** $\sin^2 x + \cos 2x - \cos x = 0$

Inverse Trigonometric Functions:

For each of the following, express the value for "y" in radians.

76.
$$y = \arcsin\left(\frac{-\sqrt{3}}{2}\right)$$
 77. $y = \arccos(-1)$ **78.** $y = \arctan(-1)$

Example: Find the value without a calculator.

$$\cos\left(\arctan\frac{5}{6}\right)$$

Draw the reference triangle in the correct quadrant first.

Find the missing side using the Pythagorean Theorem.

Find the ratio of the cosine of the reference triangle.

$$\cos\theta = \frac{6}{\sqrt{61}}$$

For each of the following give the value without a calculator, draw the reference triangle.

63. $\tan\left(\arccos\frac{2}{3}\right)$ **64.** $\sec\left(\sin^{-1}\frac{12}{13}\right)$

$$65. \sin\left(\arctan\frac{12}{5}\right) \qquad \qquad 66. \sin\left(\sin^{-1}\frac{7}{8}\right)$$

Circles and Ellipses

Graph the circles and ellipses below:

67. $x^2 + y^2 = 16$

69. $\frac{x^2}{1} + \frac{y^2}{9} = 1$

68.
$$x^2 + y^2 = 5$$

							7						
_	_	 _	_	_	_	-		_	-	_	_	_	_

						Γ.					
_		_						_	_		_
_		-		_				_	-		-
_	_	-	-	-	-		-	-	-	-	-
•	+	+	-	-			-	-	-	-	►
-		+-									
	-	+									
		1									
						7					

<u>Limits</u>

Finding limits numerically.

Complete the table and use the result to estimate the limit.

71.
$$\lim_{x \to 4} \frac{x-4}{x^2 - 3x - 4}$$

x	3.9	3.99	3.999	4.001	4.01	4.1
f(x)						

72. $\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5}$

x	-5.1	-5.01	-5.001	-4.999	-4.99	-4.9
f(x)						

Finding limits graphically.

Find each limit graphically. Use your calculator to assist in graphing.

73.
$$\lim_{x \to 0} \cos x$$
74.
$$\lim_{x \to 5} \frac{2}{x - 5}$$
75.
$$\lim_{x \to 1} f(x)$$

$$f(x) = \begin{cases} x^2 + 3, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

Evaluating Limits Analytically

Solve by direct substitution whenever possible. If needed, rearrange the expression so that you can do direct substitution.

76.
$$\lim_{x \to 2} (4x^2 + 3)$$
77.
$$\lim_{x \to 1} \frac{x^2 + x + 2}{x + 1}$$

78.	$\lim \sqrt{x^2 + 4}$	79.	$\lim \cos x$
	$x \rightarrow 0$		$x \rightarrow \pi$

80.
$$\lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1} \right)$$
 HINT: Factor and simplify.

81.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3}$$

82.
$$\lim_{x \to 0} \frac{\sqrt{x+1-1}}{x}$$
 HINT: Rationalize the numerator.

83.
$$\lim_{x \to 3} \frac{3-x}{x^2-9}$$
84.
$$\lim_{h \to 0} \frac{2(x+h)-2x}{h}$$

One-Sided Limits

Find the limit if it exists. First, try to solve for the overall limit. If an overall limit exists, then the one-sided limit will be the same as the overall limit. If not, use the graph and/or a table of values to evaluate one-sided limits.

85.
$$\lim_{x \to 5^+} \frac{x-5}{x^2-25}$$
86.
$$\lim_{x \to -3^-} \frac{x}{\sqrt{x^2-9}}$$

87.
$$\lim_{x \to 10^+} \frac{|x-10|}{x-10}$$
 88. $\lim_{x \to 5^-} \left(-\frac{3}{x+5}\right)$

Vertical Asymptotes

Determine the vertical asymptotes for the function. Set the denominator equal to zero to find the *x*-value for which the function is undefined. That will be the vertical asymptote.

89.
$$f(x) = \frac{1}{x^2}$$
 90. $f(x) = \frac{x^2}{x^2 - 4}$ **91.** $f(x) = \frac{2 + x}{x^2(1 - x)}$

Horizontal Asymptotes

Determine the horizontal asymptotes using the three cases below.

- **Case I.** Degree of the numerator is less than the degree of the denominator. The asymptote is y = 0.
- **Case II.** Degree of the numerator is the same as the degree of the denominator. The asymptote is the ratio of the leading coefficients.
- **Case III**. Degree of the numerator is greater than the degree of the denominator. There is no horizontal asymptote. The function increases without bound. (If the degree of the numerator is exactly 1 more than the degree of the denominator, then there exists a slant asymptote, which is determined by long division.)

Determine all Horizontal Asymptotes.

92.
$$f(x) = \frac{x^2 - 2x + 1}{x^3 + x - 7}$$
 93. $f(x) = \frac{5x^3 - 2x^2 + 8}{4x - 3x^3 + 5}$ **94.** $f(x) = \frac{4x^5}{x^2 - 7}$

Determine each limit as x goes to infinity.

RECALL: This is the same process you used to find Horizontal Asymptotes for a rational function. **** In a nutshell...**

- 1. Find the highest power of *x*.
- 2. How many of that type of *x* do you have in the numerator?
- 3. How many of that type of x do you have in the denominator?
- 4. That ratio is your limit!

95.
$$\lim_{x \to \infty} \left(\frac{2x - 5 + 4x^2}{3 - 5x + x^2} \right)$$
96.
$$\lim_{x \to \infty} \left(\frac{2x - 5}{3 - 5x + 3x^2} \right)$$
97.
$$\lim_{x \to \infty} \left(\frac{7x + 6 - 2x^3}{3 + 14x + x^2} \right)$$

Limits to Infinity

A rational function does not have a limit if it goes to $\pm \infty$, however, <u>you can state the direction the limit is</u> <u>headed if both the left- and right-hand side go in the same direction.</u>

Determine each limit, if it exists. If the limit approaches $\infty or - \infty$, please state which one the limit approaches.

98.
$$\lim_{x \to -1^+} \frac{1}{x+1} =$$
99.
$$\lim_{x \to 1^+} \frac{2+x}{1-x} =$$
100.
$$\lim_{x \to 0} \frac{2}{\sin x} =$$